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Abstract—An improved upper bound on the error probability
(first error event) of time-invariantconvolutional codes, and the re-
sulting error exponent, is derived in this paper. The improved error
bound depends on both the delay of the code and its width (the
number of symbols that enter the delay line in parallel) . Deter-
mining the error exponent of time-invariant convolutional codes is
an open problem. While the previously known bounds on the error
probability of time-invariant codes led to the block-coding expo-
nent, we obtain a better error exponent (strictly better for 1).
In the limit our error exponent equals the Yudkin–Viterbi
exponent derived for time-variant convolutional codes. These re-
sults are also used to derive an improved error exponent forperi-
odically time-variantcodes.

Index Terms—Convolutional codes, error exponent, error
probability, periodically time-variant codes, time-invariant codes,
Yudkin–Viterbi exponent.

I. INTRODUCTION

CONVOLUTIONAL codes, first introduced by Elias [4],
are used in numerous communication systems. A linear

binary convolutional encoder [5], [17] is a finite-state machine
consisting of a -bits shift register and linear output func-
tions. At each time instance a new information vector

of bits is pushed into the register. Then,
output bits are calculated by some linear
combinations of bits in the register. These linear combinations,
denoted , determine the specific convolutional
code. The rate of the codeis the ratio between the number of
input symbols and the number of output symbols per use, i.e.,

. The quantity , the memory size of
the code, is often called the constraint length.

In specific terms, let the content of the register at timebe
, i.e., is a binary vector of

length . Each linear combination is represented by a binary
row vector of length and defines the following binary
matrix :

...
(1)
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Fig. 1 An example for rate1=2 convolutional code

Then, the correspondingoutput bits at time are

(2)

Fig. 1 shows an example of a rate convolutional code
with , , , , and

. In principle, the linear combinations can
vary with time. General time-varying codes are seldom used, if
at all. Mostly, in practice, time-invariant codes where the’s
are fixed, are used. In the recent years, though, periodically
time-variant codes where the’s vary periodically with time
also become popular.

There are several algorithms to decode a convolutional code
[6], [7]. The best decoder in the sense of minimizing the error
probability (but not the bit-error rate) is the maximum-likeli-
hood (ML) decoder which is usually implemented by the Viterbi
algorithm [16]. The complexity of the Viterbi decoder is propor-
tional to [18, p. 374].

In this paper, we analyze the error exponent of time-in-
variant and periodically time-variant convolutional code. The
definition of the error exponent of convolutional codes is
somewhat more complicated than the corresponding definition
for block codes. In block codes, the error exponent is defined as

where is the block length and
is the probability of making an error in decoding a codeword
of size . Without assuming any particular structure, the
decoding complexity of a block code is proportional to ,
the number of codewords. Now, as noted above, the decoding
complexity of a convolutional code without assuming any
particular structure is proportional to . Hence, the
adopted reasonable definition of the error exponent for convo-
lutional codes is . Another issue is
the definition of . Since the codewords in a convolutional
code can be infinitely long, the common definitions used for
are either the probability of the first error event, the probability
of error of a finite frame, or the expected fraction of errors. In
this paper we define to be the probability of the first error
event, whose exponential behavior is essentially the same as
the frame error probability.

Based on practical experience, convolutional codes seem to
be better than block codes with block length . How-
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ever, theoretically, so far the better error performance bounds
were shown only for time-varying codes. In the classical work
[16], [18], [20], , the average error probability over the en-
semble of time-variant codes, has been upper-bounded, and the
resulting error exponent is given by

(3)

where is the Yudkin–Viterbi exponent

(4)

and , is the largest solution of
, is the channel’s symbols input distribution, and

is the channel’s transition probability. It is easy to see
that , where

is the random coding error exponent for block codes [8]. For
the binary-symmetric channel (BSC) considered in this paper
the maximizing prior is uniform at any rate , and so the
dependency of on will be omitted.

As for time-invariant convolutional codes, it was previously
proved that they attain the channel capacity, and that the error
exponent of a random time-invariant code in BSC is at least as
good as the random-coding error exponent of block codes [21],
[14], [10]. A similar result for a general discrete memoryless
channel (DMC) was shown in [22]. In addition, it was claimed
[23], but without a proof, that for largethe error exponent of
time-invariant convolutional codes is . Thus the deter-
mination of the error exponent of time-invariant convolutional
codes is still open and considered here.

The main result of this paper is an improved upper bound
for the average error probability (first error event) over the en-
semble of random time-invariant convolutional codes in BSC.
This bound leads to a proof of the claim made in [23] that for
large the time-invariant codes attain the Yudkin–Viterbi ex-
ponent. Furthermore, it shows the behavior of the error expo-
nent for general values of the memoryand the width . The
derivation for time-invariant codes is extended, and leads to an
improved upper bound for the average error probability over the
ensemble of random periodically time-variant codes. The re-
sulting error exponent is given for each period, and equals
the exponent derived for fixed codes, but withreplaced by .
Clearly, as the exponent approaches , but our
result specifically shows how the Yudkin–Viterbi exponent is
approached.

It should be noted that our analysis can be extended to general
DMC’s, but it becomes more cumbersome. To make this paper
clearer and more concise we concentrate on the BSC channel,
and refer to [13] for the more general analysis. In this respect

we note that linear convolutional codes, like all linear codes,
may have some drawbacks when used over general, nonadditive,
DMC’s, and may not attain the optimal error exponent.

Another interesting quantity of convolutional codes is the
free distance. For time-variant codes a lower bound on the free
distance, the “Costello bound,” which is better than the corre-
sponding minimal distance of block codes, was shown in [3].
It was later proved that this bound is also attained (see [24])
for time-invariant convolutional codes with , and in some
specific cases (see [25] and [2]) it is attained forequals at least

(but not necessarily large). This may imply that a similar re-
sult can be obtained for the error exponent. Unfortunately, the
error exponent we obtain is poorer than the Yudkin–Viterbi ex-
ponent for small values of. As a matter of fact, even after our
work, the determination of theoptimalrandom coding error ex-
ponent for time-invariant and periodically time-variant convo-
lutional codes is still open.

II. PRELIMINARIES: USEFUL LEMMAS

In this section we provide several technical lemmas that will
be required for the proof of our main result in Section III. This
section may be omitted in first reading, as we shall refer to the
necessary results in the proof of the main result.

Lemma 1: Let be a random binary block code of length
and codewords with the property that for any and

we have

(5)

where denotes bit-by-bit exclusive-or. Then the average error
probability of a maximum-likelihood (ML) decoder for this
code when used in BSC can be bounded by

(6)

for any .

This Lemma is well known. For example, a proof of a more
general result is given in [13] and [15]. Also, this Lemma can
actually follow from classical results in [19] and [8]. The proof
of the lemma is based on the fact that if a random vector is added
to all codewords, the code’s performance does not change. Yet,
the resulting new random code, which has more randomness,
has the property that the codewords are pairwise-independent,
and so its expected error probability is upper-bounded by Gal-
lager’s random coding bound [8].

The following technical Lemmas correspond to properties of
random binary matrices.

Lemma 2: Let be an , binary matrix, with a
full rank (i.e., its rank is ), and let be an uniformly
distributed random binary matrix. Then the random ma-
trix is uniformly distributed.

Proof: Since has full rank and , for any vector
of length , there are solution to the equation .
Hence, if is uniformly distributed random vector, we have

i.e., is uniformly distributed. Applying the above for each
column of leads to the lemma.
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Lemma 3: Let be binary independent and identically
distributed (i.i.d.) random vectors of length, with uniform dis-
tribution over , and suppose that . Then the prob-
ability that the first rows in the matrix

...
...

...

...
. . .

...

(7)

will be independent but theth row will be dependent is

dependent independent

for
for
for .

(8)

Proof: Since the first rows are linearly indepen-
dent (with probability ). The rows’ length is , hence
rows are linearly dependent (with probability).

For the intermediate range, we can upper-bound the desired
probability by the probability that theth row is a linear com-
bination of the previous rows. There are different
linear combinations and the probability that a specific combina-
tion equals the th row is . This can be seen by looking at
the last line of the matrix from right to left. The probability that

equals a specific combination of the elements above
it, is . Now moving one element to the left, and looking at

, there is still a probability that equals a specific
combination of the elements above it, because it is independent
of the previous equality. We can continue in this manner up to
the leftmost element . Using the union bound we get the de-
sired bound.

III. M AIN RESULT

In this section we bound the average error probability and find
an error exponent of a randomly selected time-invariant convo-
lutional code operating in a BSC. The random ensemble of the
time-invariant codes, from which the code is chosen, is defined
by all possible linear combinations . This requires

random, uniformly distributed, bits. We will provide an
upper bound and an error exponent expression for the average
probability of a first error event and, consequently, for the av-
erage frame error probability . Recall that the probability
of a first error event, at time, is theconditionalprobability to
diverge from the correct path, given that no error occurred until
that time1 while the frame error probability is the error prob-
ability of the block code generated by a finite transmission of
the convolutional code, with zero padding at the end. Unfortu-

nately, our derivation cannot lead to a bound on the fraction of
decoding errors since it cannot assume that in case where the
decoder diverges from the correct path it will later return to it.
Worse than that, our derivation does not exclude the possibility
that from some time point on all bits will be wrongly decoded.

In the sequel we denote the transmitted (infinite) information
word by , and so the corresponding trans-
mitted codeword (with an initial all zero register content) is
given by

...
...

...

...
. . .

...

...
...

...

...

...

(9)

where was defined in (1). Note that is a binary matrix
with columns and an infinite number of rows.

Our proof analyzes a suboptimal decoding procedure, where
the information symbol (bits) , at each time point, is de-
coded based on limited length of future observed data. This lim-
ited length is, at most, , where is an arbitrary parameter,
discussed later. The decoder also assumes that no error occurred
so far, and so it assumes that and hence the
current register content (at time ) is accurately known.

Let

and

be two different information (message) words, where
for , i.e., and both fit to the

decoded symbols until time . If we also have it is
not important which of the two words the decoder has chosen
because it tries to decode only. In this case, we say that
and arefriends.If we say that and arerivals.
On the trellis diagram of the code, rivals at timeare paths
that split at that time, while friends stay the same at least until
time .

Specifying further the decoder we analyze, it calculates the
likelihood of and along alimited observed future, chosen
so that both codewords, and , beginning from time
, still satisfy the conditions of Lemma 1, i.e., the exclusive-or

(xor) of the two codewords is uniformly distributed. We call this
length thecomparison length.The comparison length, which

1We will actually provide a stronger result and bound the error to diverge from
the path at timet given that we were on the correct path at timet�1, regardless
of what happened before that. This error event is calledan error burst that starts
at timet [10].
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depends on and the words and , turns out to be
(i.e., time steps), where is the

maximum value of (but not larger than ) such that the row
vectors of the matrix

...
(10)

are linearly independent. To see this, we first note that since the
code is linear, . The portion of

between and is given by the matrix where
is the matrix in (10) and is the generating (random) matrix

of the code. Now, since has a full rank, Lemma 2 implies that
is uniformly distributed, as required. Note that the

comparison length depends on the xor of the two words, i.e.,
, and it is if and only if the two

words are friends.
Let be the likelihood of the word accumulated

from time along a path of length. Our decoder decides at
time that was sent if it is the symbol at timeof a codeword

that fits all the previously decoded symbols, and in addition

for all rivals of at time . In other words, overcomesall
its rivals at time . The existence of such a word is not guar-
anteed. A situation may occur that overcomes , over-
comes but overcomes . The reason is that different pairs
of words may be compared along paths with different lengths.
In this situation we declare an error. It is also possible that there
exist many words that overcome all their rivals. However, this
can only be if these words were not compared between them,
i.e., they are friends. Thus the decoder can decode the symbol
at time since it is the same for all friends.

If and are rivals of such that

and for then we say that
and areidenticalwith respect to at time . Clearly, if
overcomes , it also overcomes all the identicals of. Effec-
tively, all identical rivals can be considered as a single rival.

Let be the number of nonidentical rivals of at
time such that the comparison length is . Since
is a function of the xor between words and the code is linear,
then is independent of . Since a time-shift of any
information word is another information word, it is indepen-
dent of as well. Thus . Note that for finite
transmission of a frame of length , depends on

(decreases as approaches ) due to the constrains at the
end (zero padding of the information word). Still, in this case

.
As will be seen below, to get an upper bound on the average

error probability of our decoder we need to specify, or to
find an upper bound for it. For this, observe that since the rival
can be any sequence (uniformly distributed) except that it must
satisfy for and , then the matrix in (10)
has the structure of the matrix (7) in Lemma 3. With ,
the number of such matrices is . is the number

of matrices of that form with the additional property that the
first rows are independent, but theth row depends on
the previous rows. A bound on the probability that a matrix of
the form (7) will have this property is given by (8). Thus in
order to get a bound on we should multiply the bound on
the probability by thetotal number of matrices of that form. For

we should consider all matrices of sizewhich have a
full rank. A simple upper bound for this number is
for , and otherwise. Combining the above, we hence
get

if and
if and
if
if or .

(11)

At this point we are ready to present a general formula for an
upper bound on the expected error probability (first error event)
associated with our decoder. At each time point, the portion of
size of the true codeword and all its nonidentical rivals with
comparison length essentially form a block code with block
size and with at most words. Due to the way the
decoder was constructed, we can apply Lemma 1, and get the
upper bound on the expected (over the ensemble)
error probability of this block code. Now, we have a set of such
block codes, associated with all possible comparison lengths.
We should find the probability of not making an error in any
of these block codes. This probability can be bounded by com-
bining the union bound with Lemma 1, leading to the following
upper bound on the average probability of error in decoding at
time , given that no error has occurred until that time2 (i.e., the
first error event probability):

(12)

where . Note that in principle we could have used
a different for each term in the summation. This upper bound
holds for any and it is independent of the transmitted word,
because the bound we have for is independent of
and .

Substituting (11) in (12) leads to (13) (at the bottom of the
following page).

Setting in (13), forces the comparison length to be,
and we get

(14)

for any . This is the well known block-coding
lower bound on the error exponent of time-invariant convolu-
tional codes [21], [14]. For the convolutional code is a
block code, and hence the error exponent is tight [9].

We next show how (13) leads to a better bound for and
. In principle, we wish to evaluate (13) for an optimal

value of . A good choice, although not necessarily optimal, is
. The motivation for making this choice is that the

bound in (11) which is used to upper-bound in each term of
(13) is poor (greater than ) for . Thus choosing

2Since we search for the decoded codeword only from the group of codewords
with the same prefix untilt � 1 as the true word, we must assume no error
occurred until now.
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only increases the bound on the error probability.
Substituting in (13) we get

(15)

for any . Notice that for this choice of ,
for .

The sum in (15) can be further upper-bounded bytimes
the largest term in the sum. Define and let
be the largest solution of the equation . Utilizing
the properties of (see [8]), it is easy to see that for
the first term in the sum is the largest, and so

(16)

For the last term is the largest which yields

(17)

The bounds above hold for anyand . Note that under the
constraint that is fixed, (16) is optimized by
which may indicate the tradeoff between the delay and the width
of the code.

Combining(16), (17) and (14) and taking yields the
following lower bound on the error exponent :

(18)

When we set the right term to be zero. This bound de-
pends on both the rate and .

In Fig. 2 the bound above, , is plotted for ,
and assuming that the channel is BSC with transition
probability . For comparison we also plotted the block
coding error exponent (which is for )
and the Yudkin–Viterbi exponent of time-variant
convolutional codes (which is for ).

More explicit expressions for , at least for some region
of , can be obtained by evaluatingand then optimizing with
respect to (w.r.t.) . A simple analysis shows the following.

• For , i.e., we have
and .

• For we have and
.

Fig. 2 E (R) with b = 1; 2; 4; 10; 1 for a BSC with� = 0:1

• For , i.e., , varies
between and .

• At the middle region, if in addition

then we have . (In this case the two expres-
sions in (18) are equal.)

We see that for any and , and
. On the other hand, for we have

, and for , for any . For
( ), we have

Hence , i.e., our bound on the error
exponent of time-invariant convolutional codes approaches the
Yudkin–Viterbi bound.

So far we have determined the error exponent for a first error
event. This result immediately provides the error exponent for
the frame error probability . The frame error probability
is associated with the case where the convolutional code op-
erates as a block code, transmitting a finite number of, say,

information symbols. In this mode, after the information
symbols are sent, zeros are pushed into the register until it is
cleared. Clearly, the average probability of making an error in
decoding the entire vector of information symbols can be
simply bounded by

(19)

for

for

(13)



102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000

where is the average probability of the first error event. Now,
the true rate of the code in this mode, is .
Since can be chosen so that while , it is still subex-
ponential w.r.t. (e.g., ), the exponential behavior of

and are the same, yet the effective rate as
.

Summarizing the above, we proved in effect the following
theorem which is the main result of the paper.

Theorem 1: The average error probability (first error event
and frame error) over the random ensemble of time-invariant
convolutional code, used over a BSC, is upper-bounded by
(18). At any choice of width the error exponent is positive for
any . For the error exponent is better than the
block-coding error exponent. As , the error exponent
approaches the Yudkin–Viterbi error exponent of time-varying
convolutional codes.

IV. PERIODICALLY TIME-VARYING CODES

Periodically time-varying convolutional codes have drawn
some attention in the recent years [11], [12]. One reason for
this interest is the fact that such codes are obtained from
the “tail-biting” trellis diagram of good block codes [1]. It
is claimed that the performance of such codes is better than
time-invariant codes, yet their decoding complexity and design
complexity are similar. In this section we explore their error
exponent which follows our analysis of time-invariant codes.

In specific terms, periodically time-varying convolutional
codes with period are codes where the matrix of (1) is
periodically time-depended, i.e., the linear functionals de-
pend on the time, and satisfy . The resulting
random ensemble of periodic convolutional codes requires

random bits. Each periodically time-variant code,
with period , can be represented as a fixed convolu-
tional code (see [12]), but not vice versa, as the class of fixed

convolutional codes is larger and contains
different codes. Also, the decoding complexity of the

periodic codes is , which is independent of and equals
the decoding complexity of fixed codes, but it is smaller
than , the decoding complexity of general
fixed codes.

Clearly, as the period becomes large, the class of periodi-
cally time-varying codes becomes closer to the general class of
time-varying codes. Thus as , the error exponent of the
periodically time-varying codes approaches the Yudkin–Viterbi
exponent. Since each periodically time-varying code can
be represented as a time-invariant code, it is trivially
shown that for there exists a time-invariant code whose
error exponent approaches the Yudkin–Viterbi exponent. Note,
though, that our results in Theorem 1 above, are different (and
stronger) in the following two ways. First, we show that the ex-
ponent of the average error probability over the larger ensemble
of all fixed code approaches the Yudkin–Viterbi expo-
nent as . Second, we provide an error exponent expres-
sion for time-invariant codes that holds for any value of. In this
respect, returning to periodically time-variant codes, it is inter-
esting to explore their error exponent for any value of, and not

only asymptotically. As will be shown below, Theorem 1 and its
derivation can be used to get such error exponent.

Interestingly, only a few changes are needed in the proof
above in order to adapt it to periodic codes. One difference
is the definition of the comparison length. For time-invariant
codes it is the maximum value ofsuch that all the row vec-
tors of the matrix (10) are linearly independent. For periodically
time-variant codes it is sufficient that the rows

for any , are linearly independent. Thus we should
derive a result, similar to Lemma 3, that bounds the probability
that in a random matrix theth row is the first row that is a linear
combination of rows . Following the derivation
of Lemma 3, this probability, that is the first “ -dependent”
row, is upper-bounded as

is the first -dependent row
for
for
for .

(20)

Now, in order to bound , the number of nonidentical rivals in
this case of periodically time-variant codes, we can follow the
derivation of (11) but use (20), and the fact that for

, to get

if and
if and
if
if or .

(21)
Substituting this bound on in (12), leads to an upper
bound on for periodically time-variant codes. Similarly
to the above, a good choice for, the look-ahead interval, is

. With this choice of , and with of (21)
we get

(22)

This upper bound is the analogous expression to (15) for period-
ically time-varying codes. Looking on both expressions, we see
that formally in (15) is replaced by in (22), yet is the same
at both expressions. This actually indicates that we achieve the
improvement in the error exponent by going fromto ,
yet the complexity of the code remains the same.

Proceeding in the same way that (18) was derived from (15),
we get from (22) the following exponent for periodically time-
varying codes:

(23)

where is the largest solution of the equation
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As noted above, this is the error exponent attained by
fixed code, yet the decoding complexity of the periodically time-
varying code is only the complexity of a fixed code.

V. SUMMARY AND CONCLUSIONS

In this paper we found an improved upper bound for the ex-
pected error probability (first error event) over a random choice
of time-invariant convolutional code. This bound is strictly
better, for , than the corresponding bound for block codes.
As (yet ) the error exponent associated with
this bound approaches the Yudkin–Viterbi exponent. While the
fact that the Yudkin–Viterbi exponent is achieved by some fixed
code for large enoughis not too surprising, our results provide
a bound that holds for any constraint length and for any value
of , the number of symbols that enter the code in parallel.

The result on time-invariant codes was extended and we also
provided an improved upper bound for the expected error prob-
ability over a random choice of periodically time-varying
codes, that hold for any period. The expression for the bound
is the same expression obtained for fixed codes, but withre-
placing . Thus for the same decoding complexity of
the fixed and the periodically time-variant codes with delay

, the resulting bound on the error probability of the periodi-
cally time-variant code is better. This may confirm the practical
evidence noticed recently regarding the better performance of
periodically time-variant codes.

The results obtained in this paper do not claim to provide
the best random-coding error exponent of fixed and periodi-
cally time-varying convolutional codes. Actually, finding the
optimal error exponent is still an open problem. Neverthe-
less, the exponent obtained in this paper cannot be improved
significantly, unless a different approach is taken. The reason
is that by using as a basic block the random coding expo-
nent for block codes, one cannot achieve a better bound than

where indicates the ensemble randomness, i.e.,
its entropy [13]. In our case, the ensemble randomness, or the
number of random bits that are needed to specify a (period-
ically time-variant) code is . Hence, one cannot
expect to achieve a better exponent than that of results then a
block code of length . This is exactly what we got for
near-capacity rates (rates that use . In this paper we
analyzed the average performance over the random ensemble
of convolutional codes. As in block codes, the best possible
convolutional code may have (at least in some rates) a better
exponent. Thus a more refined analysis, that uses, e.g., ex-
purgating techniques, may lead to an improved exponent, as
was done in [18] for time-varying codes.

Finally, our results should also be extended to provide the
error exponent for the nit error rate (BER) of time-invariant and
periodically time-variant convolutional codes, and not only the
first error event.
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