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Improved Error Exponent for Time-Invariant and
Periodically Time-Variant Convolutional Codes

Nadav ShulmanStudent Member, IEEEBNd Meir FederFellow, IEEE

Abstract—An improved upper bound on the error probability
(first error event) of time-invariantconvolutional codes, and the re-
sulting error exponent, is derived in this paper. The improved error
bound depends on both the delay of the cod& and its width (the
number of symbols that enter the delay line in parallel)b. Deter-
mining the error exponent of time-invariant convolutional codes is
an open problem. While the previously known bounds on the error
probability of time-invariant codes led to the block-coding expo-
nent, we obtain a better error exponent (strictly better forb > 1).
Inthe limit & — oo our error exponent equals the Yudkin-Viterbi
exponent derived for time-variant convolutional codes. These re-
sults are also used to derive an improved error exponent foperi-
odically time-variantcodes.

Index Terms—Convolutional codes, error exponent, error
probability, periodically time-variant codes, time-invariant codes,
Yudkin—Viterbi exponent.

. INTRODUCTION

ONVOLUTIONAL codes, first introduced by Elias [4],
are used in numerous communication systems. A lin
binary convolutional encoder [5], [17] is a finite-state machiné

consisting of & - K -bits shift register and linear output func-
tions. At each time instance a new information vecipr =
(ul, u2, ---, u?) of b bits is pushed into the register. Then,

output bitso, = (o}, o2, - --

combinations of bits in the register. These linear combinatior{s
, 9,,, determine the specific convolutional

code. The rate of the codeis the ratio between the number of _ . i . . :
- variant and periodically time-variant convolutional code. The

‘S&finition of the error exponent of convolutional codes is

denotedg,, g, - --

input symbols and the number of output symbols per use,

R = b/n. The quantityy = bK = RnK, the memory size of

the code, is often called the constraint length.
In specific terms, let the content of the register at titrize
Uy = (uy, w1, -+, wr_x41), i.€., Uy is a binary vector of

lengthw. Each linear combinatiog, is represented by a binary

row vector of lengthy and defines the following x n binary
matrix G:
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Fig. 1 An example for raté /2 convolutional code
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Then, the correspondingoutput bits at time are

0y = Ut G. (2)

Fig. 1 shows an example of a rat¢2 convolutional code
withd = 1,n = 2, K = 8, g (10100101), and

g» = (10010010). In principle, the linear combinatiorgg can
vary with time. General time-varying codes are seldom used, if
at all. Mostly, in practice, time-invariant codes where ghes

are fixed, are used. In the recent years, though, periodically
time-variant codes where thg's vary periodically with time

ear

also become popular.
There are several algorithms to decode a convolutional code
[6], [7]. The best decoder in the sense of minimizing the error
probability (but not the bit-error rate) is the maximum-likeli-
hood (ML) decoder which is usually implemented by the Viterbi
algorithm [16]. The complexity of the Viterbi decoder is propor-
idnal to2” [18, p. 374].

In this paper, we analyze the error exponent of time-in-

somewhat more complicated than the corresponding definition
for block codes. In block codes, the error exponent is defined as
limpy_0o —(1/N) log P. whereN is the block length and’.

is the probability of making an error in decoding a codeword
of size N. Without assuming any particular structure, the
decoding complexity of a block code is proportional2®”,

the number of codewords. Now, as noted above, the decoding
complexity of a convolutional code without assuming any
particular structure is proportional 8 = 2% Hence, the
adopted reasonable definition of the error exponent for convo-
lutional codes idimg ., —(1/nK) log F.. Another issue is
the definition of P.. Since the codewords in a convolutional
code can be infinitely long, the common definitions usedRor

are either the probability of the first error event, the probability
of error of a finite frame, or the expected fraction of errors. In
this paper we defind>, to be the probability of the first error
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Based on practical experience, convolutional codes seem to
be better than block codes with block length= nK. How-

0018-9448/00$10.00 © 2000 IEEE



98 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000

ever, theoretically, so far the better error performance bounde note that linear convolutional codes, like all linear codes,

were shown only for time-varying codes. In the classical wonkay have some drawbacks when used over general, nonadditive,

[16], [18], [20], P., the average error probability over the enDMC’s, and may not attain the optimal error exponent.

semble of time-variant codes, has been upper-bounded, and th&nother interesting quantity of convolutional codes is the

resulting error exponent is given by free distance. For time-variant codes a lower bound on the free
distance, the “Costello bound,” which is better than the corre-
sponding minimal distance of block codes, was shown in [3].

. 1 - i . i
Khm e log P. = Fyv(R) (3) It was later proved that this bound is also attained (see [24])
= for time-invariant convolutional codes with> 1, and in some
whereEyv(R) is the Yudkin—Viterbi exponent specific cases (see [25] and [2]) itis attainedifequals at least

2 (but not necessarily large). This may imply that a similar re-
sult can be obtained for the error exponent. Unfortunately, the
Eyv(R) = mgx Eo(po, Q) error exponent we obtain is poorer than the Yudkin—Viterbi ex-
1410 ponent for small values df. As a matter of fact, even after our

work, the determination of theptimalrandom coding error ex-
max logy 3 | Q@)P(ylz)/ 0| (@) ;
y x

ponent for time-invariant and periodically time-variant convo-
lutional codes is still open.

and po = min(1, p’), p’ is the largest solution of’ R =

Eo(p', @), Q is the channel’'s symbols input distribution, and

P(y|z) is the channel’s transition probability. It is easy to see Il. PRELIMINARIES: USEFUL LEMMAS

that B,(R) < Exv(R), where In this section we provide several technical lemmas that will

be required for the proof of our main result in Section Ill. This
E.(R) = max [Eo(p) — pR] section may be omitted in first reading, as we shall refer to the
0=p=1 necessary results in the proof of the main result.

is the random coding error exponent for block codes [8]. For Lemma 1: Let C be a random binary block code of length
the binary-symmetric channel (BSC) considered in this papatrand M codewords with the property that for ahyZ j and
the maximizing prior@ is uniform at any rateR, and so the = € {0, 1} we have
dependency o_EO(-)_ on @ will be omitted. _ Pr(e(i) ®e(j) =a) =2~V (5)

As for time-invariant convolutional codes, it was previously ) ) ]
proved that they attain the channel capacity, and that the erfgpere® denotes bit-by-bit exclusive-or. Then the average error
exponent of a random time-invariant code in BSC is at least B&oPability of a maximum-likelihood (ML) decoder for this
good as the random-coding error exponent of block codes [29de When used in BSC can be bounded by
[14], [10]. A similar result for a general discrete memoryless P. < (M —1)r2~NEa(p) (6)
channel (DMC) was shown in [22]. In addition, it was claime
[23], but without a proof, that for largkthe error exponent of
time-invariant convolutional codes By (R). Thus the deter- ~ This Lemma is well known. For example, a proof of a more

mination of the error exponent of time-invariant convolutionaeneral result is given in [13] and [15]. Also, this Lemma can
codes is still open and considered here. actually follow from classical results in [19] and [8]. The proof

The main result of this paper is an improved upper bourfd the lemmais based on the fact that if a random vector is added
for the average error probability (first error event) over the ef@ all codewords, the code’s performance does not change. Yet,
semble of random time-invariant convolutional codes in BSdhe resulting new random code, which has more randomness,
This bound leads to a proof of the claim made in [23] that fd¥as the property that the codewords are pairwise-independent,
large b the time-invariant codes attain the Yudkin—Viterbi exand so its expected error probability is upper-bounded by Gal-
ponent. Furthermore, it shows the behavior of the error expg@ger’s random coding bound [8].
nent for general values of the memdkyand the widths. The The following technical Lemmas correspond to properties of
derivation for time-invariant codes is extended, and leads to &ndom binary matrices.

improved upper bound for the average error probability over the| arnma 2: Let A be anm x n. > m binary matrix, with a
ensemble of random periodically time-variant codes. The gy rank (i.e., its rank isn) and letG be ann. x k unh"ormly

sulting error exponent is given for each perifdand equals gisripyted random binary matrix. Then thex & random ma-
the exponent derived for fixed codes, but witteplaced byT". iy Acvis uniformly distributed.

Clearly, asl” — oo the exponent approachéyv (1), but our Proof: SinceA has full rank and: > m, for any vectoy
result specifically shows how the Yudkin—Viterbi exponent ig¢ lengthsm, there are2™=" solution to the equatioriz = y.

approached. _ Hence, ifz is uniformly distributed random vector, we have
It should be noted that our analysis can be extended to general

DMC's, but it becomes more cumbersome. To make this paper ~ PX(¥ = %) = Pr(Az = u) = 277277 =277

clearer and more concise we concentrate on the BSC channel, ¥ is uniformly distributed. Applying the above for each

and refer to [13] for the more general analysis. In this respemilumn of G leads to the lemma. O

or any0 < p < 1.
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Lemma 3: Let{u; }52, be binary independent and identicallynately, our derivation cannot lead to a bound on the fraction of
distributed (i.i.d.) random vectors of lengihwith uniform dis- decoding errors since it cannot assume that in case where the
tribution over{0, 1}, and suppose tha # 0. Then the prob- decoder diverges from the correct path it will later return to it.
ability that the firstr — 1 rows in the matrix Worse than that, our derivation does not exclude the possibility

that from some time point on all bits will be wrongly decoded.
In the sequel we denote the transmitted (infinite) information

U 0 0 word by U = (u4, uz, --+), and so the corresponding trans-
U Uy 0 mitted codeword (with an initial all zero register content) is
: : given by
U UK-1 ot (1)
I w0 0 U,
Up_1  Up—2  + Up_K Uy up - 0 U,
Uy Up_1 et Up_ K41 : ) :
cU)= | ¥x Ux—1 - w = Uk | g (9)
will be independent but theth row will be dependent is : ' : :
Uy U1 o UK U,
Pr < (r dependentr — 1 independent
0, forr < K
< { or—lg—bK, for K <r <bK+1 (8) whereG was defined in (1). Note tha{l) is a binary matrix
0, forbK +1 < 7. with n columns and an infinite number of rows.

Our proof analyzes a suboptimal decoding procedure, where
the information symboli( bits) u;, at each time point, is de-
Proof: Sinceu; # 0 the firstK rows are linearly indepen- coded based on limited length of future observed data. This lim-
dent (with probabilityl). The rows’ length iK', hencebhK +1  ited length is, at mosty~, wherer is an arbitrary parameter,
rows are linearly dependent (with probability. discussed later. The decoder also assumes that no error occurred
For the intermediate range, we can upper-bound the desiggffar, and so it assumes thfat, uo, - - -, u,—1) and hence the

probability by the probability that theth row is a linear com- current register content (at tinte- 1) is accurately known.
bination of ther — 1 previous rows. There arzr—* different Let

linear combinations and the probability that a specific combina-
tion equals theth row is2~"%. This can be seen by looking at
the last line of the matrix from right to left. The probability that v
u,_x+1 equals a specific combination of the elements above
it, is 2. Now moving one element to the left, and looking a?nd
u,_ k12, there is still a probability tha2—* equals a specific W= (--wy, w1, weyn---)
combination of the elements above it, because it is independent
of the previous equality. We can continue in this manner up to
the leftmost element,.. Using the union bound we get the debe two different information (message) words, where
sired bound. v, = w, = u; fori < ¢, ie.,V andW both fit to the
decoded symbols until time— 1. If we also haves, = w, itis
Hl. MAIN RESULT not important which of the two words the decoder has chosen

. ) . “because it tries to decode only. In this case, we say th&
In this section we bound the average error probability and finghq W’ arefriends.If v, # w, we say tha¥ andW arerivals.

an error exponent ofa randomly selected time-invariant conv@p, the trellis diagram of the code, rivals at timere paths
lutional code operating in a BSC. The random ensemble of thgyt split at that time, while friends stay the same at least until
time-invariant codes, from which the code is chosen, is defingghe #.

by all possiblen linear combinationg, , - - -, g,,. Thisrequires  gpecifying further the decoder we analyze, it calculates the
n-b- K random, uniformly distributed, bits. We will provide anjikelinood of V andW along alimited observed future, chosen
upper bound and an error exponent expression for the averggenat both codewords(V) ande(W), beginning from time
probability of a first error evenP. and, consequently, forthe av-; stj|| satisfy the conditions of Lemma 1, i.e., the exclusive-or
erage frame error probability ame . Recall that the probability (o) of the two codewords is uniformly distributed. We call this

diverge from the correct path, given that no error occurred until
that time while the frame error probability is the error prob- 1we will actually provide a stronger result and bound the error to diverge from

. - . the path at time given that we were on the correct path at titre1, regardless
ability of the block code generated by a finite transmission g?ewhathappened before that. This error event s calledrror burst that starts

the convolutional code, with zero padding at the end. Unfortattimet [10].

:(...vt7vt+l7vt+2...)
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depends ort and the wordsV and W, turns out to ben - of matrices of that form with the additional property that the
LV, W) (i.e.,L,(V, W)time steps), wheré,(V, W)isthe first — 1 rows are independent, but théh row depends on
maximum value of (but not larger tharr) such that the row the previous rows. A bound on the probability that a matrix of

vectors of the matrix the form (7) will have this property is given by (8). Thus in
V.eW, order to get a bound o/, we should multiply the bound on
VignoW,., the probability by theotal number of matrices of that form. For

A= . (10) ¢ = 7 we should consider all matrices of sizevhich have a

full rank. A simple upper bound for this numberig, < 27

Viee 1 ®Wipe for 7 < Kb, and0 otherwise. Combining the above, we hence
are linearly independent. To see this, we first note that since tet
codeislinearg(V)® (W) = ¢(V &W). The portion ok(V & 0, if £ < K andf < 7
W) betweent andt 4 £ — 1 is given by the matrixAG where Qb(E—F)+b+C if K<¢<Kbandf < +
Alis the matrix in (10) and? is the generating (random) matrix Me < 4 o L =< Kb (11)
of the code. Now, sincd has a full rank, Lemma 2 implies that 0, ’ if £ Kbor? > 7

¢(V & W) is uniformly distributed, as required. Note that the At thi int dvt ¢ 't la t
comparison length depends on the xor of the two words, i.e. IS point we are ready 1o present a generatformuia for an

o L . Upper bound on the expected error probability (first error event)
\j/:vi)(r‘gé Z()a fﬁeﬁ(tj(sv ® W), and itis0 if and only if the two associated with our decoder. At each time point, the portion of

Let S(V|¢) be the likelihood of the word” accumulated sizent of the true codeword and all its nonidentical rivals with
t

from time ¢ along a path of lengtif. Our decoder decides atc.omparison lengtld essentially form a block code with block

timet thatv, was sent if it is the symbol at timeof a codeword sizent and with at most/, + 1 words. Due to the way the

: . . .. _decoder was constructed, we can apply Lemma 1, and get the
V that fits all the previously decoded symbols, and in addmoﬁpper bound#2-"Ex(#) on the expected (over the ensemble)

SHV|IL(VeW)) > Sy (W|L(V & W)) error probability of this block code. Now, we have a set of such
block codes, associated with all possible comparison lengths.
We should find the probability of not making an error in any
of these block codes. This probability can be bounded by com-

comeslZ butU overcomed”. The reason is that different pairsbmmg the union bound with Lemma 1, leading to the following

of words may be compared along paths with different Iengthlépper bound on the average probability of error in decoding at

In this situation we declare an error. It is also possible that th tf’@?t’ given th?t nobert;(_)l_rthzs.ls occurred until that tirgee., the
exist many words that overcome all their rivals. However, th yst error event proba lity):

can only be if these words were not compared between them,
i.e., they are friends. Thus the decoder can decode the symbol

at timet since it is the same for all friends. S
If W andW’ are rivals ofV such that where0 < p < 1. Note that in principle we could have used

, a differentp for each term in the summation. This upper bound
LV, W) = L(V, W) holds for anyr and it is independent of the transmitted wafd

andW,; = W' fort < i < t+ L,(V, W) then we say thal¥’ because the bound we have fof,(V, ¢) is independent oV’
andW’ areidenticalwith respect td at timet. Clearly, if ¥ andt.
overcomed¥, it also overcomes all the identicals Bf. Effec- ~ Substituting (11) in (12) leads to (13) (at the bottom of the
tively, all identical rivals can be considered as a single rival. following page).
Let M,(V, t) be the number of nonidentical rivals f at ~ Settingr = K in (13), forces the comparison length to ke
time ¢ such that the comparison lengthsis- ¢. Since L,(-) and we get
is a function of the xor between words and the code is linear, P, < 2/tK9—nKEy(p) — g=nK(Eo(p)=pR) (14)
then M,(V, ¢) is independent o¥. Since a time-shift of any B o _
information word is another information word, it is indepenfor any 0 < p < 1. This is the well known block-coding
dent of¢ as well. ThusM,(V, t) = M,. Note that for finite lower bound on the error exponent of time-invariant convolu-
transmission of a frame of |engtN, MZ(Va t) depends on tional codes [21], [14] Fo¥ = 1 the COﬂVOlluti.OI’]al codeis a
t (decreases as approachesV) due to the constrains at theblock code, and hence the error exponent is tight [9].
end (zero padding of the information word). Still, in this case e next show how (13) leads to a better boundifor 1 and
MV, t) < My(V, 0) < M,. K > 1. In principle, we wish to evaluate (13) for an optimal
As will be seen below, to get an upper bound on the averag@ue ofr. A good choice, although not necessarily optimal, is
error probability of our decoder we need to spedifly, or to 7 = b(& —1). The motivation for making this choice is that the
find an upper bound for it. For this, observe that since the rivBPund in (11) which is used to upper-bout in each term of
can be any sequence (uniformly distributed) except that it mu&8) is poor (greater thaat®) for £ > b(K — 1). Thus choosing
satisfyw; = v; for « < ¢t andw, # v, then the matrix in (10) ,_
has the structure of the matrix (7) in Lemma 3. With: £ + 1, _ Since we search_forth_e d_ecoded codeword only from the group of codewords
with the same prefix untit — 1 as the true word, we must assume no error
the number of such matricesd¥™ = 2°(¢+1) A4, is the number occurred until now.

for all rivals W of V at timet. In other wordsy overcomeslll
its rivals at timet. The existence of such a wold s not guar-
anteed. A situation may occur thHt overcomed¥, W over-

P <Y Mp2B 0 (12)
£=0
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7 > b(K — 1) only increases the bound on the error probability. °%*

Substitutingr = (K — 1) in (13) we get
b(K—1)
Fe, < Z 2p(b(€—[&’)+b+4)2—néE0(p)
(=K
b(K—1)
—o—r(K-1)R Z 9~ nlEa(p)=pR(L+1/D)]  (15)
=K

forany0 < p < 1. Notice that for this choice of, 2!7 =
MU= E)+b+L for ¢ = b(K — 1).

The sum in (15) can be further upper-bounded By times
the largest term in the sum. Defid# = R(1 + 1/b) and letp’
be the largest solution of the equatiéla(p) = pR’. Utilizing
the properties oF(p) (see [8]), it is easy to see that fer< o
the first term in the sum is the largest, and so

Fe < 2—nK[E0(p)—pR(l/b-l—l/K)—(log bK)/an. (16)
Forp > o’ the last term is the largest which yields
ﬁe S 2—nK[b((K—l)/K)(E0(p)—pR)—(log bK)/an' (17)

The bounds above hold for ayand K. Note that under the

constraint thabX = v is fixed, (16) is optimized by = K

which may indicate the tradeoff between the delay and the width

of the code.
Combining(16), (17) and (14) and takidg — cc yields the
following lower bound on the error exponeBt(R):
max

1
E — —pR
0<p<min(p’,1) < O(p) b P ) ’

Jmax b(Eo(p) = pR)} :

E.(R) = max {

(18)

Whenyp' > 1 we set the right term to be zero. This bound de-

pends on both the rate andé.
In Fig. 2 the bound abover.(R), is plotted forb = 2, 4,

101

0.3
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0.05[

07
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Fig. 2 Ec(R)withb =1, 2, 4, 10, oo for a BSC withe = 0.1

. ForHLlRo < R< HLIC, i.e.,Rg < R < C, p varies
betweerp and1.
« At the middle region, if in addition
1 dEo(p)
- R
5 S Tap
then we haveE.(R) = Ry’. (In this case the two expres-
sions in (18) are equal.)

We see that for anft andb, E.(R) < bE.(R)andE.(R) <
Evyv(R). On the other hand, fob = 1 we haveE,.(R) =
E.(R), and forb > 1, E.(R) > E.(R) foranyR > 0. For
b>1(R =~ R, we have

E.(R)~ Rmin(p, 1) & Fo(min (o', 1)).

<R

i

pP=p

Hencelim; .., E.(R) = Eyv(R), i.e., our bound on the error
exponent of time-invariant convolutional codes approaches the

and 10 assuming that the channel is BSC with transitiovudkin—Viterbi bound.
probabilitye = 0.1. For comparison we also plotted the block So far we have determined the error exponent for a first error
coding error exponent,. (i) (which is E.(R) for b = 1) event. This result immediately provides the error exponent for
and the Yudkin-Viterbi exponenEyv(R) of time-variant the frame error probabilitys..... The frame error probability
convolutional codes (which i&.(R) for b — o). is associated with the case where the convolutional code op-
More explicit expressions fdt.( ), at least for some region erates as a block code, transmitting a finite number of, say,
of R, can be obtained by evaluatipand then optimizing with ¥ information symbols. In this mode, after thé information
respect to (w.r.t.p. A simple analysis shows the following.  symbols are sent, zeros are pushed into the register until it is
« For0 < R < 2 Ry, i.e., R < Ry = Eo(1) we have Ccleared. Clearly, the average probability of making an error in

o>1 andEc(l}Jgr)l =Ry - LR. decoding the entire vector a¥ information symbols can be
h ’ simply bounded by

« For ;2. C < R < C we havey = 0 andE.(R) =

041 — —
bE,(R) Pframe S N Pe (19)
7—1
Z 2p(b([—k’)+b+[)2—n[ﬁ’g (p) + 2/71)‘:'2—71,‘:‘ng(p)7 for < Kb
- =K
<] (13
S oK 09— 1) for r > Kb

=K
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whereP, is the average probability of the first error event. Nowpnly asymptotically. As will be shown below, Theorem 1 and its
the true rate of the code in this modefis = Ni/(N+K—1)n. derivation can be used to get such error exponent.
SinceN can be chosen so that whifé >>> K, it is still subex- Interestingly, only a few changes are needed in the proof
ponential w.r.tX (e.g..N = K?), the exponential behavior of above in order to adapt it to periodic codes. One difference
Piame and P, are the same, yet the effective rdtg — R as is the definition of the comparison length. For time-invariant
K — oco. codes it is the maximum value défsuch that all the row vec-
Summarizing the above, we proved in effect the followingprs of the matrix (10) are linearly independent. For periodically
theorem which is the main result of the paper. time-variant codes it is sufficient that the rows

Theorem 1: The average error probability (first error event G it T, i 2T, - i 4 | (£ —4)/T]
and frame error) over the random ensemble of time-invariant
convolutional code, used over a BSC, is upper-bounded # any1 < i < T, are linearly independent. Thus we should
(18). At any choice of widtlb the error exponent is positive for derive a result, similar to Lemma 3, that bounds the probability
any R < C. Forb > 1 the error exponent is better than thehat in a random matrix theth row is the first row that is a linear
block-coding error exponent. As — oo, the error exponent combination of rows —17, »—27, - - -. Following the derivation
approaches the Yudkin—Viterbi error exponent of time-varyingf Lemma 3, this probability, that is the first “I-dependent”
convolutional codes. row, is upper-bounded as

Pr (r is the firstT-dependent roy

IV. PERIODICALLY TIME-VARYING CODES 0, forr < K
. _ _ _ < ole=D/Tlo=bK for K <+ <VTK +1 (20)
Periodically time-varying convolutional codes have drawn 0, for bTK 4+ 1 < 1.

some attention in the recent years [11], [12]. One reason for

this interest is the fact that such codes are obtained frddow, in order to bound/,, the number of nonidentical rivals in
the “tail-biting” trellis diagram of good block codes [1]. Itthis case of periodically time-variant codes, we can follow the
is claimed that the performance of such codes is better thdgrivation of (11) but use (20), and the fact tB&t> 2L=] for
time-invariant codes, yet their decoding complexity and design> 0, to get

complexity are similar. In this section we explore their error 0 if /< Kandl < +

exponent y\{h|ch follows our gnaly3|_s of time-invariant co<_jes. oY~ +0€/T if K < ¢ < KbTandl < r
In specific terms, periodically time-varying convolutional A, < e .
codes with periodl” are codes where the matri¥ of (1) is 2, !f t=7< KT
0, if £> Kbl ord > 7.

periodically time-depended, i.e., the linear functionglg) de- (21)

pend on the time, and satisfyy; (¢) = g;(t + T). The resulting  gypstituting this bound o, in (12), leads to an upper
random ensemble of periodic convolutional codes requirggynd onP, for periodically time-variant codes. Similarly
bnKT random bits. Eacly/n periodically time-variant code, g the above, a good choice for the look-ahead interval, is

with period7’, can be represented as a fixgh/nT" convolu- - — y(f — 1). With this choice ofr, and with M, of (21)
tional code (see [12]), but not vice versa, as the class of fixgg get

v /n' = bT/nT convolutional codes is larger and contains

bnKT? different codes. Also, the decoding complexity of the bIT(K—-1)

periodic codes i€, which is independent df’ and equals P, < 27/E-DR Z 2 B ()= pRAFI/AII - (22)

the depoding complexity of/n fixed codes, but it is smaller =K

;E(aer;zé;;; 2", the decoding complexity of general’/nT This upper bound is the analogous expression to (15) for period-

. ._.ically time-varying codes. Looking on both expressions, we see
Clegrly, as the period’ hecomes large, the class of per'Od'ih tformallyb in (15) is replaced by7’in (22), yetn is the same
gally t|me.- varying codes becomes closer to the general classa €Eoth expressions. This actually indicates that we achieve the
time-varying codes. Thus &5 — oc, the error exponent of the improvement in the error exponent by going frérto i/ = T,

periodically time-varying codes approaches the Yudkin—Viter bt the complexity of the code remains the same

exponent. Since eadlyn periodically time-varying code can Proceeding in the same way that (18) was derived from (15),

be represente(/j asld’/nT tlm_e-|nvar|ant.cod(.a, itis trivially we get from (22) the following exponent for periodically time-
shown that fod’ — oo there exists a time-invariant code whos arying codes:

error exponent approaches the Yudkin—Viterbi exponent. Note,
though, that our results in Theorem 1 above, are different (and 1

stronger) in the following two ways. First, we show that the ex- Ep(lt) = max {o<p<lg?r§pf, 1) <E0(p) T pR) ’
ponent of the average error probability over the larger ensemble o

of all b7 /nT fixed code approaches the Yudkin-Viterbi expo- max bT(Eo(p) — pR)} (23)
nent ad’ — oc. Second, we provide an error exponent expres- r=r=

sion for time-invariant codes that holds for any valué.dh this  wherey’ is the largest solution of the equation

respect, returning to periodically time-variant codes, it is inter-

esting to explore their error exponent for any valu&'oénd not Eo(p) = pR(1 + 1/0T).
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As noted above, this is the error exponent attainedBynT
fixed code, yet the decoding complexity of the periodically time-
varying code is only the complexity oftgn fixed code.
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V. SUMMARY AND CONCLUSIONS

In this paper we found an improved upper bound for the ex-[1]
pected error probability (first error event) over a random choice
of b/n time-invariant convolutional code. This bound is strictly
better, forb > 1, than the corresponding bound for block codes.
Asb — oo (yetb/n = R) the error exponent associated with 3
this bound approaches the Yudkin—Viterbi exponent. While the
fact that the Yudkin—Viterbi exponent is achieved by some fixed [4]
code for large enoughis not too surprising, our results provide 5]
a bound that holds for any constraint length and for any value
of b, the number of symbols that enter the code in parallel.

The result on time-invariant codes was extended and we alsdf!
provided an improved upper bound for the expected error probm
ability over a random choice @f/n periodically time-varying

codes, that hold for any peridfl. The expression for the bound  [8]
is the same expression obtained for fixed codes, but#ithe- 9]
placingb. Thus for the same decoding complexity = 2% of

[10]

the fixed and the periodically time-variabytr» codes with delay
K, the resulting bound on the error probability of the periodi-[ll]
cally time-variant code is better. This may confirm the practical
evidence noticed recently regarding the better performance &%l
periodically time-variant codes. [13]

The results obtained in this paper do not claim to provide
the best random-coding error exponent of fixed and perioditl4l
cally time-varying convolutional codes. Actually, finding the
optimal error exponent is still an open problem. Neverthe{15]
less, the exponent obtained in this paper cannot be improved
significantly, unless a different approach is taken. The reasoHG]
is that by using as a basic block the random coding expo-
nent for block codes, one cannot achieve a better bound tha#’]
2—HE-(R) where H indicates the ensemble randomness, i.e.,
its entropy [13]. In our case, the ensemble randomness, or theg]
number of random bits that are needed to specify a (period[-lg]
ically time-variant) code isH = 0I'nK. Hence, one cannot
expect to achieve a better exponent than that of results then[zo]
block code of lengtibZ’n K. This is exactly what we got for
near-capacity rates (rates that yse o). In this paper we [,y
analyzed the average performance over the random ensemble
of convolutional codes. As in block codes, the best possible

. ) 22]

convolutional code may have (at least in some rates) a bettér
exponent. Thus a more refined analysis, that uses, e.g., eg3]
purgating techniques, may lead to an improved exponent, as
was done in [18] for time-varying codes. [

Finally, our results should also be extended to provide the
error exponent for the nit error rate (BER) of time-invariant and(25]
periodically time-variant convolutional codes, and not only the
first error event.
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